RTD ELEMENTS

This Section Contains

RTD Style Selection Pages

RTD Thermocouple Reference Data

RTD Lead Wire Configuration

Please CALL for Quote!!

If you can't find what you need

Call

From Illinois 618-465-7623

From St. Louis 314-231-0752

info@ipscustom.com

RTD ELEMENTS

Construction 1

M = MqOG = General

2-3 Style

10 = Sealed with leads

80 = With 1/2" x 1/2" Stainless fitting

90 = With self gripping spring

91 = With 1/2" x 1/2" Spring loaded fitting 92 = With 1/2" x 1/2" Spring loaded fitting and oil seal

4

P = Platinum 100 Ohm (other types available)

C = Copper 10 Ohm

5 Class

B, A (B is standard)

6 Leads (24 gauge stranded)

4-wire 2-wire 3-wire

Single В С Dual D Ε

Sheath Alloy 7

6 = 316 Stainless Steel (Standard)

I = Inconel 600

8 **Sheath Diameter**

1 = 1/16" 2 = 1/8" (other sizes available)

3 = 3/16" 4 = 1/4"

9-10 **Sheath Length in Inches**

11 **Sheath Length Fraction**

A = 1/8" D = 1/2" G = 7/8" B = 1/4" E = 5/8" 0 = None

C = 3/8" F = 3/4"

12-13 Lead Length in Inches

14 **Lead Insulation**

T = Teflon(500°F)

F = Fiberglass (750°F)

15 **Fitting**

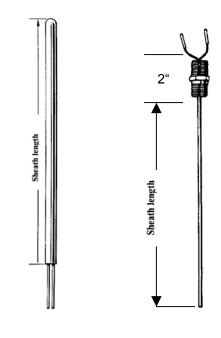
See Page 5 (None = 0)

16-17 **Immersion Length in Inches**

Length required with fixed fittings (None = 00)

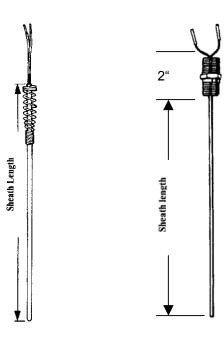
18 **Immersion Length Fraction**

A = 1/8" D = 1/2"


B = 1/4" E = 5/8" None = 0

C = 3/8" F = 3/4"

19 **Special Features**


S = Special (List special features)

0 = No

STYLE 10

STYLE 80

STYLE 90

STYLE 91& 92

Part No. R 1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

G = 7/8"

INDUSTRIAL PROCI	ALTON, ILLINOIS, USA	
TEL. 618-465-7623	FAX 618-465-7679	www.ipscustom.com

10/2/03 - 2 -

RTD with Plugs and Jacks

Construction

M = MqOG = General

2-3 Style

20 = Standard plug with crimping insert

21 = Standard plug with tube adapter

22 = Standard jack with crimping insert

23 = Standard jack with tube adapter

4

P = Platinum 100 Ohm (Other types available)

C = Copper 10 Ohm

5

B, A (B is standard)

6 Leads (24 ga stranded)

3-wire 4-wire 2-wire

Single В С Dual D Ε

7 **Sheath Alloy**

6 = 316 Stainless Steel

I = Inconel 600

8 **Sheath Diameter**

2 = 1/8" (other sizes available) 1 = 1/16"

3 = 3/16" 4 = 1/4"

9-10 **Sheath Length in Inches**

11 **Sheath Length Fraction**

A = 1/8" D = 1/2" G = 7/8" B = 1/4" E = 5/8" 0 = None

C = 3/8" F = 3/4"

12 **Fitting**

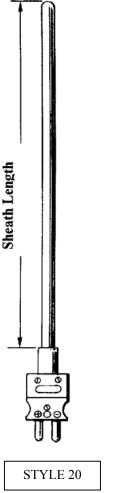
See Page 5 (None – 0)

Immersion Length in Inches 13-14

Length required with fixed fittings only. (None = 00)

15 **Immersion Length Fraction**

G = 7/8" A = 1/8" D = 1/2"


B = 1/4" E = 5/8" 0 = None

C = 3/8" F = 3/4"

16 **Special Features**

S = Special (List special features)

0 = No

STYLE 22

Part No. R <u>1</u> <u>23</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>910</u> <u>11</u> <u>12</u> <u>1314</u> <u>15</u> <u>16</u>

INDUSTRIAL PROCI	ALTON, ILLINOIS, USA	
TEL. 618-465-7623	FAX 618-465-7679	www.ipscustom.com

10/2/03 - 3 -

RTD with Extension

1 Construction

> M = MgOG = General

2-3 Style

30 = with extension

31 = with extension and strain relief spring

4

P = Platinum 100 Ohm (Other types available)

C = Copper 10 Ohm

Class 5

B, A (B is standard)

Leads (24 gauge stranded) 6

> Single Dual

7 **Sheath Alloy**

6 = 316 Stainless Steel (Standard)

I = Inconel 600

8 **Sheath Diameter**

1 = 1/16"

3 = 3/16"

9-10 **Sheath Length in Inches**

11 **Sheath Length Fraction**

> A = 1/8" B = 1/4"

C = 3/8"

12-14 **Extension Length in Inches**

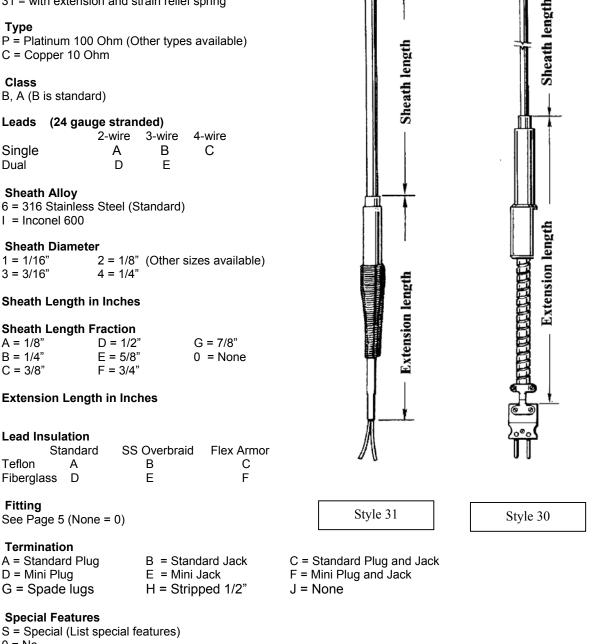
15 **Lead Insulation**

> Teflon В Α С

Fiberglass D

16

See Page 5 (None = 0)


17 **Termination**

A = Standard Plug E = Mini Jack D = Mini Plug

18 **Special Features**

0 = No

Part # R 1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

INDUSTRIAL PROCI	ALTON, ILLINOIS, USA	
TEL. 618-465-7623	FAX 618-465-7679	www.ipscustom.com

10/2/03 - 4 -

RTD with Heads

Construction 1

M = MgoG = General

2-3 Style

70 = Head with fixed fitting 73 = Head with nipple-union 71 = Head with compression fitting 74 = Head with Nipple

72 = Head with nipple –union-nipple 75 = Head only 76 = Head with 1/2" x 1/2" Hex **Fitting**

4 **Type**

P = Platinum 100 Ohm (Other types available)

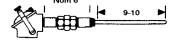
C = Copper 10 Ohm

5 Class

B, A (B is standard)

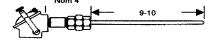
Style 71

9-10


Style 70

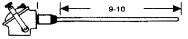
6 Leads (24 gauge stranded)

2-wire 3-wire 4-wire В C Single Α Dual D Ε



7 **Sheath Allov**

4 = 304 Stainless Steel 6 = 316 Stainless Steel I = Inconel 600



8 **Sheath Diameter**

1 = 1/16" 3 = 3/16" (Other sizes available)

2 = 1/8" 4 = 1/4"

9-10 **Sheath Length in Inches**

11 **Sheath Length Fraction**

A = 1/8" G = 7/8" D = 1/2" B = 1/4" E = 5/8" 0 = None

C = 3/8" F = 3/4"

Head

12

A = IPS Alum. Head D = Alum, snap lever head B = Stan. Alum head E = Large Cast iron head

C = Cast Iron

13 Size

1 = 1/2" x 1/2" 4 = 1/2" x 3/4" 2 = 3/4" x 1/2" 5 = 3/4" x 3/4" 3 = 1" x 1/2" $6 = 1" \times 3/4"$

Process connection is first digit, second is conduit

Nipple-union-nipple supplied with 3" nipples and malleable

Nipple-union supplied with 3" nipple and malleable union. Nipple supplied with 3" nipple.

All fittings galvanized unless specified differently.

Other sizes available upon request

14 **Spring Load**

0 = No

1 = Self gripping spring

2 = Adjustable 1/2" x 1/2" spring loaded fitting (IF selected it replaces first nipple and reduces nom length by 1")

15 **Special Features**

S = Special (List special features)

0 = No

Part # R 1 23 4 5 6 7 8 9 10 11 1213 14 15

INDUSTRIAL PROC	ALTON, ILLINOIS, USA	
TEL. 618-465-7623	FAX 618-465-7679	www.ipscustom.com

10/2/03 - 5 -

RTD Reference Data

RTD Assemblies

Resistance temperature detectors (RTD's) are used for temperature measurements in the range of - 328°F to 1166°F (-200°C to 630°C). The electrical resistance of the wire utilized is proportional to the temperature variation. The electrical resistance in the RTD, is measured by an indicating instrument, which converts the reading into temperature. RTD's provide electrical and mechanical stability with negligible drift and error.

Selecting the RTD Element

The selection of an element to be used, in a system to control, measure or monitor temperature depends on many factors. Listed below are factors comparing the three standard element materials.

	Platinum	Copper			
Maximum Operating Temperature	630°C	300°C	316°C		
Accuracy	±.1%	±.5%	±.2%		
Cost	High	Medium	Low		
Linearity	Nearly	Non	Most		
Resistance	High High		Low		
R/T Characteristic Reproducibility	Excellent	Good	Poor		

Tolerance Classes for Finished RTD's

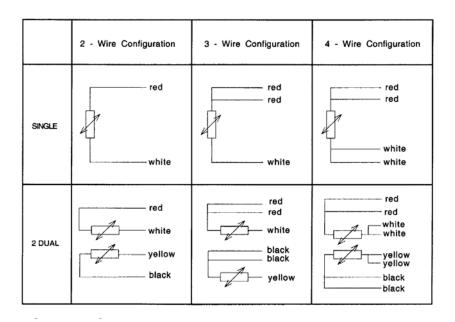
Tolerance	
Values (°C)	
$\pm (0.1^{\circ}\text{C} + 0.0017 \text{ [t]})$	-50°C to 250°C
$\pm (0.13^{\circ}\text{C} + 0.0017 \text{ [t]})$	-100°C to 450°C
$\pm (0.25^{\circ}\text{C} + 0.0042 \text{ [t]})$	-196°C to 600°C
$\pm (0.6^{\circ}\text{C} + 0.01 \text{ [t]})$	-196°C to 600°C
	Values (°C) ±(0.1°C + 0.0017 [t]) ±(0.13°C + 0.0017 [t]) ±(0.25°C + 0.0042 [t])

These tolerances meet or exceed ASTM/IEC thermometer class. They do not necessarily Determine the working range of the thermometer.

	Thermocouple	RTD			
Accuracy	Limits of error wider than RTD	Limits of error smaller than			
		thermocouples			
Ruggedness	Excellent	Sensitive to strain, shock and			
	pressure.				
Temperature	-400° to 4200°F	-200° to 1500°F			
Size	Can be as small as .01" sheath	Size limited to min /16",temperature			
	material tip sensitive. sensitive for length of bulb.				
Drift	Should be checked periodically,	0.01 to 0.1°C per year, less drift			
	higher than RTD's.	than thermocouple.			
Resolution	Must resolve millivolts per degree,	Ohms per degree, much higher			
	lower signal to noise ratio.	signsl to noise ratio than			
		thermocouple			
Cold Junction Reference	Required	Not required			
Lead Wire	Must match lead wire calibration to	Can use copper lead wire for			
	thermocouple calibration.	extension wire.			
Response	Can be made small enough for	Thermal mass restricts time to			
	millisecond response time	seconds or more.			
Cost	Low	Higher than thermocouples.			

INDUSTRIAL PROCE	ALTON, ILLINOIS, USA	
TEL. 618-465-7623	FAX 618-465-7679	www.ipscustom.com

10/2/03 - 6 -


RTD Reference Data continued.

Leadwire configuration

A temperature temperature detector determines the temperature by measuring resistance. The sensing element is usually a small diameter wire manufactured so that its resistance will change in a known and consistent manner. To measure the resistance accurately and consistently, other extraneous resistances must be compensated for or minimized. A major cause of extraneous resistance is lead wire in series with the RTD. The readout is the sum of the bulb resistance and the leadwire resistances. The leadwire resistance can be minimized by a three wire RTD configuration.

In the three wire configuration the power supply is taken to one side of the RTD. This puts the other two leadwires in opposite arms of the Wheatstone bridge so that they cancel each other out and have little effect on the bridge output voltage. In the 3 wire configuration, the resistance of the lead wire length is compensated for in the Wheatstone bridge. This design is recommended for most industrial applications.

An even more accurate wire configuration is the 4 wire design. In this design, leadwires #1 and #2 are on one side of the power supply while leadwires #3 and #4 are on the other side of the power supply. All 4 leadwire resistances are negated and the bulb resistance stands as the resistance input alone.

IPS Type B RTD (standard)

Temperature (°F)	-200	-100	0	32	100	200	300	400	500	600
Tolerance (±°F)	1.8	1.1	.7	.6	.7	.9	1.5	2.0	2.7	3.3
$(\pm \Omega)$		0.3	0.2	0.1	0.2	0.2	.03	0.4	0.6	0.7

Temperature (°F)	700	800	900	1000	1100	1200	1300	1400	1500	1560
Tolerance (±°F)	3.9	4.5	504	6.0	6.5	7.0	7.6	8.4	9.0	9.4
(± Ω)	0.8	0.9	1.0	1.1	1.1	1.2	1.3	1.4	1.5	1.5

This chart is based on a Class B standard platinum industrial RTD with a base resistance of 100 Ω at 0°C. Temperature coefficient = 0.00385/ Ω / Ω /°C

Other charts available upon request

INDUSTRIAL PROCI	ALTON, ILLINOIS, USA	
TEL. 618-465-7623	FAX 618-465-7679	www.ipscustom.com

10/2/03 -7-